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ABSTRACT: Differential equations are important in many different aspects of modern life. 

Differential equations, for instance, can be used in physics to model the trajectory of a projectile or 

the motion of particles in a fluid.  This paper proposes the Galerkin technique for using Bernoulli 

wavelets to numerically solve differential equations.  This technique helps us find numerically such 

types of problems using weight functions known as Bernoulli wavelets, which are assumed basis 

elements.  The exact solution and the current approaches (FDM & LWGM) are contrasted with the 

numerical solutions obtained using the proposed method.  Here we will use some test problems to 

demonstrate how well the proposed technique works. 
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INTRODUCTION 

Finding the precise solutions to differential equations using traditional methods like calculus 

and trigonometry is necessary to understand how they behave. One can learn how differential 

equations behave under various conditions by using these solutions. Analytical methods are 

those that are used to calculate the exact solution. However, the main draw of numerical 

techniques is their ability to provide solutions for a wide range of differential equations that 

are not yet ready for analytical solutions. In the literature, differential equations have recently 

been solved numerically using a few different numerical techniques [1-3]. 

In many fields, such as electrical engineering, seismic geology, quantum physics, and 

mathematics, wavelets have become autonomous ideas.  An essential concept in approximation 

theory is the representation of a smooth function as a series expansion using orthogonal 

polynomials. In wavelet theory, wavelet function bases are being investigated as a potential 

substitute for piecewise polynomial trial functions for solving differential equations 

numerically. In applied mathematics, the Galerkin technique is highly regarded due to its 

usefulness and effectiveness [4]. With its many advantages over the conventional finite 

difference and finite element methods, the Galerkin method with wavelets finds widespread 

use in a variety of scientific and engineering domains. To a certain extent, the wavelet approach 

is a powerful alternative to the finite element method. Furthermore, the wavelet technique is 

an effective alternative to the numerical solution of differential equations [5–6]. This study 
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presents the Wavelet-based Galerkin technique, which utilizes Bernoulli wavelets (BWGM) to 

solve differential equations numerically.  

The present paper is organized as follows: The Bernoulli wavelets and function approximation 

are given in Sec. 2. Section 3 provides the Bernoulli wavelet based Galerkin technique 

(BWGM) for solving differential equations. Section 4 presents the numerical illustration. 

Finally, the conclusion of the proposed work is discussed in Sec. 5. 

BERNOULLI WAVELETS AND FUNCTION APPROXIMATION 

Bernoulli wavelets 

Bernoulli wavelets ˆ( ) = ( , , , ), x k i j xi j   have four arguments: 

1ˆ 1, =1,2,..., 2 ,ki i i k−= −  is assumed to be any positive integer, j  is the order for 

Bernoulli polynomials, and x  is the normalized time [7 – 8]. They are defined on the interval  

 )0,1  as follows: 
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of signed rational numbers that arise in the series expansion of trigonometric functions and can 

be defined by the identity   
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The first few Bernoulli numbers are 0 1 2

1 1
1 , , , ....

2 6
  = = − = . and 

Bernoulli polynomials are: 

0 1 2

21 1
( ) 1, ( ) , ( ) , ....

2 6
B x B x x B x x x= = − = − +

 

The Bernoulli wavelet bases for 1 & 3k M= = are:  

1,0( ) 1x = , ( )1,1( ) 3 2 1x x = −    ,     ( )2

1,2 ( ) 5 6 6 1x x x = − +   and so on. 
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Function approximation: 

Suppose  ( )y x  is expanded using Bernoulli wavelets in  )2 0 , 1L as: 

( )( ) , ,
1 0

y x c xi j i j
i j




=  
= =

                                        (2.3) 

Approximate ( )y x by truncating the above infinite series i.e.  

 ( )
1 12

( ) , ,
1 0

k M

y x c xi j i j
i j


− −

=  
= =

 (2.4) 

METHOD OF SOLUTION 

The general form of differential equation (D.E.) is, 

( )y y y f x  + + =                                          (3.1) 

Boundary conditions             ( ) ( )0 , 1y a y b= =
                                               

(3.2) 

Here &   are constants and ( )xf  be a continuous function. 

Write the Eq. (3.1) as ( )( )R x y y y f x  = + + −                              (3.3) 

Here ( )xR   is the residual of Eq. (3.1). If ( ) 0=xR  for the exact solution and ( )y x  will satisfy 

the boundary conditions.  

Take the trail series solution of Eq. (3.1), ( )y x defined over [0, 1) which can be expanded using 

modified Bernoulli wavelets and satisfying the given boundary conditions which involve 

unknown coefficients as follows,  

( )
1 12

( ) , ,
1 0

k M

y x c xi j i j
i j


− −

=  
= =

                          (3.4) 

The unknown coefficients , 'n mc s  are to be determined. 

By choosing higher degree Bernoulli wavelet polynomials, accuracy in the solution is 

increased. Differentiate Eq. (3.4) twice with respect to x and substitute the values of   

, ,y y y   in Eq. (4.3). We choose weight functions that are assumed base elements and 

integrate boundary values with the residual to zero for finding the unknown coefficients , 'n mc s   

[8]. 

               i.e.              ( ) ( )
1

1,

0

0j x R x d x = , 0 , 1 , 2 , ........j =  

From the above integral, a system of linear algebraic equations is obtained and solving this 

system, is to get unknown coefficients. Substitute these unknown coefficients in Eq. (3.4), to 

obtain the numerical solution of Eq. (3.1). To know the accuracy of BWGM for the test 

problems, use the error measure i.e. maximum absolute error and it will be calculated by 

max max ( ) ( )e aE y x y x= − , ( )ey x  and ( )ay x  are exact and approximate 

solutions respectively. 

NUMERICAL ILLUSTRATION 

Problem 4.1 Consider the D.E. [3],          

1, 0 1y y x − = −                                         (4.1) 
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BCs:  ( ) ( )0 0 , 1 0y y= =                                                       (4.2) 

As per the method explained in section 3 and the implementation for the solution of the Eq. 

(4.1) is as follows: 

The residual of Eq. (4.1) can be written as:   

( ) 1y yR x  − +=                                     (4.3) 

By choosing the weight function ( ) ( )1w x x x= −  for Bernoulli wavelet bases to satisfy 

the given boundary conditions i.e. Eq. (4.2), i.e. ( ) ( ) ( )x w x x= ψ  

     ( ) ( )1,01,0
( ) ( ) 1 1x x x x x x=  − = −ψ  

     ( ) ( ) ( )1,1 1,1
( ) ( ) 1 3 2 1 1x x x x x x x=  − = − −ψ       

     ( ) ( ) ( )2

1,2 1,2
( ) ( ) 1 5 6 6 1 1x x x x x x x x=  − = − + −ψ  

Consider the trail solution of Eq. (4.1) for   1k =  and 3M =  is given by 

( ) ( ) ( )1 ,0 1,0 1,1 1,1 1,2 1, 2
( )y x c x c x c x= + +ψ ψ ψ                          (4.4) 

Eq. (4.4) becomes           
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( ) 1 3 2 1 1
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y x c x x c x x x

c x x x x

= − + − − +

− + −

           (4.5) 

Differentiate Eq. (4.5) twice w.r.t. x  and substitute the values of  ,y y   in Eq. (4.3) and 

obtain the residual of Eq. (4.1). The “weight functions” are the same as the basis functions.  

By the weighted Galerkin method, consider the following: 

                    ( ) ( )
1

0
1,

0
x R x dx

j
= ψ , 0 , 1, 2j =                                         (4.6) 

For 0 , 1, 2j =  in Eq. (4.6),  
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From Eq. (4.7), the system of algebraic equations with unknown coefficients is found, and 

solving this system, the values for 
1,0

0.4934c = , 
1,1

0.0470c =  and 
1,2

0.0031c = .   

Substitute these values in Eq. (4.5), and the numerical solution for Eq. (4.1) is obtained. A 

comparison of the numerical solution and the absolute errors is presented in Table 1 and the 

numerical solution with the exact solution of Eq. (4.1) is  ( )
1

1

x

y x x
e

e
= −

 −
 

− 
 shown in 

Figure 1. 
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Table 1: Numerical solution and absolute error with exact solution of the problem 4.1 

x 
Numerical solution Exact 

solution 

Absolute error 

FDM Ref [3] BWGM FDM Ref [3] BWGM 

0.1 0.037255 0.038684 0.038832 0.038793 1.54e-03 1.09e-04 3.90e-05 

0.2 0.068235 0.071099 0.071173 0.071149 2.91e-03 5.00e-05 2.40e-05 

0.3 0.092313 0.096232 0.096397 0.09639 4.08e-03 1.58e-04 7.00e-06 

0.4 0.108799 0.113656 0.113777 0.113769 4.97e-03 1.13e-04 8.00e-06 

0.5 0.116933 0.12242 0.122484 0.122459 5.53e-03 3.90e-05 2.50e-05 

0.6 0.115881 0.121367 0.121592 0.121546 5.66e-03 1.79e-04 4.60e-05 

0.7 0.104724 0.109825 0.110074 0.11002 5.30e-03 1.95e-04 5.40e-05 

0.8 0.082451 0.086853 0.086803 0.086764 4.31e-03 8.90e-05 3.90e-05 

0.9 0.04795 0.050414 0.050554 0.050545 2.59e-03 1.31e-04 9.00e-06 

 

 
Figure 1: Numerical solution (BWGM) with exact solution of the problem 4.1. 

 

Problem 4.2 Next, another D.E. [9], 

2 216 7
sin( ) , 0 1

9 9
y y x x   + =                       (4.8) 

BCs:  ( ) ( )0 0, 1 0y y= =                                                                    (4.9) 

As per section 3, the values of 
1,0

3.7028c = , 
1,1

0.0c =  and 
1,2

0.2629c = − are 

determined. The numerical solution was then derived by substituting the values of 
1,0

c , 
1,1

c

and 
1,2

c in Eq. (4.5).  Table 2 compares the numerical solution to the absolute errors, whereas 

Figure 2 comparison of the numerical solution to the exact solution of Eq. (4.8) 

( )( ) siny t t= . 
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Table 2: Numerical solutions with the exact solution and the absolute errors for test 

problem 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Numerical solution (BWGM) with exact solution of the problem 4.2. 

Problem 4.3 Finally, another D.E. [10],   

( )4 4cosh 1 , 0 1y y x − =                       (4.10) 

BCs:  ( ) ( )0 0, 1 0y y= =                       (4.11) 

As per section 3, the values i.e. 
1,0

2.2306c = − , 
1,1

0.0c =  and 
1,2

0.0525c = − . To 

obtain Eq. (4.10), substitute these values of 
1,0

c , 
1,1

c and 
1,2

c  in Eq. (4.5). A comparison of 

the numerical solution to the absolute errors in Table 3 as well as   Figure 3 shows the numerical 

solution to the exact solution of Eq. (4.10) ( ) ( )( ) cosh 2 1 cosh 1y x x= − − . 

x 
Numerical Solution Exact 

solution 

Absolute error 

Ref [9] BWGM Ref [9] BWGM 

0.1 0.3087468 0.3089145 0.309016 2.69e-04 1.02e-04 

0.2 0.5925196 0.5886857 0.588772 3.75e-03 8.63e-05 

0.3 0.8151813 0.8096853 0.809016 6.16e-03 6.93e-04 

0.4 0.9540854 0.9507503 0.951056 3.03e-03 3.06e-04 

0.5 0.9982500 0.9991828 1.000000 1.75e-03 8.17e-04 

0.6 0.9465312 0.9507503 0.951056 4.52e-04 3.06e-04 

0.7 0.7952968 0.8096853 0.809016 1.37e-02 6.69e-04 

0.8 0.5811001 0.5886857 0.587785 6.68e-03 9.01e-04 

0.9 0.3093530 0.3089145 0.309016 3.37e-04 1.02e-04 
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Table 3: Numerical solutions and absolute error with the exact solution for test problem 4.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Numerical solution (BWGM) with exact solution of the problem 4.3 

CONCLUSION 

The Galerkin approach for using Bernoulli wavelets to numerically solve differential equations 

is presented in this study.  The above tables and figures reveal that the numerical solutions 

derived from the proposed approach outperform those generated by the existing methods 

(FDM, Ref [3] & Ref [9]) and show a closer resemblance to the exact solution. Additionally, 

compared to the existing method (FDM, Ref [3] & Ref [9]), the absolute error associated with 

our methodology is substantially smaller. For differential equations, the Galerkin approach 

using Bernoulli wavelets is hence highly successful. 
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